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THE PLANE CONTACT PROBLEM FOR AN ELASTIC LAYER 

FOR HIGH VIBRATION FREQUENCIES* 

M-A. S~BATYAN 

The problem of stamp vibrations on the surface of an elastic strip 
located on a stiff base is examined. There is no friction in the 
contact domain or between the strip and the base, It is noted that the 
use of methods known earlier at high frequencies results in the need to 
solve linear algebraic systems of very high order. A method which 
enables the shortwave asymptotic form of the solution to be written in 
an explicit form convenient for qualitative and quantitative analyses is 
proposed. 

1. We will assume that the time-dependence of all the functions occurring in the solution 
of the problem has the form f(z, t)= Re [f(~)e-'~~l (o is the angular frequency of the vibrations). 
Then the problem under investigation can be reduced to an integral equation in the unknown 
contact stress p(z) referred to HM%/l/ 

j~P@)K@-&z%=l> Izj<u 0.t.) 

i 
K(z)= 2n L(u)e-iXxudu, 

s 
L(m)= L,(n) - J%(u) 
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G, (u) = I _ ea““t, F, (u) = 1 + e--, k = 1, 2 

CT1 = 1/u%-p: o2 = 1/u” -1, p’ =-&g- =($f-)“, 
p&&z x2 =- 
p ’ 

a=+ 

Here h is the layer thickness, b is the stamp half-width, )I and Y are the shear modulus 
and Poisson's ratio, and p is the density. To fix our ideas, the stamp base is assumed to 
be plane, and W is the amplitude of its vibrations. 

Eq.(l.l) has been investigated earlier /l, 2/. It turns out that taking into account 
the zeros and poles of the symbol of the kernel L(n) on the real axis is essential in con- 
structing its solution. In the approaches used in /l, 2/ the problem is reduced to a linear 
algebraic system, where its order equals the number of positive zeros of the symbol au and pk 

CQ = r/l - (nk/x)2 (k = 1, . ., n,), fik = 1/p - (nklx)’ (k = 1, ., “,,) (1.2) 

As the vibration frequency increases, the parameter x obviously increases and the number 
of real zeros of ab and Sk increases with it. Therefore, systems of very high order must be 
solved at high frequencies in the approaches used in /l, 2/. 

Another approach is proposed in this paper, based on an asymptotic analysis of (1.1) as 
?( - CC. The second indepedent parameter a is here assumed to be fixed. The method is an 
extension of the method used in /3/ in which a simpler equation, for the problem of antiplane 
vibrations of a stamp, was investigated. For successful application to the problem being con- 
sidered here, the method of /3/ requires cosiderable additional investigation. 

2. We separate the function K,(z) with the symbol L,(u) possessing algebraic behaviour 
as U+,M and without zeros on the real axis, from the kernel K(x). In such a decompo- 
sition the functions L,(u) and L,(u) that have branch points appear in place of the mero- 
morphic function L(U). Slits /l/ are made in a known manner to extract single-valued branches 
in the plane of the complex variable U. 

We rewrite (1.1) in the form 

We will formulate the problem of inverting the operator with the kernel K,(x) on the 
left side for (2.1). It is known 14, 5/ that as x--f,00 the domain (-a,a) decomposes into 
the main external domain and two small boundary-layer domains of length _-llX, adjoining.the 
ends of the interual. We will consider the global structure of the solution and its behaviour 
in the external domain. It follows from the results in /l/ that if the case of singular 
values of the parameter x, for which there are double zeros or poles on the real axis, is 
excluded, then the external solution can be obtained by extending the operator K, over the 
whole real axis. This is associated with the fact that the symbol L,(u) has no real zeros. 

It is later assumed that the parameter x can take any large values outside of small 
neighbourhoods of the singular values mentioned. Then as x+oc the operator K, is trans-F- 
formed into a convolution operator and its explicit inversion results in the equation 

-a 

1, = h 
(71 u=o = - g 

-k(l + @Xi+) (1 _ $iK) 

Q (T) = & $ G (u) cixur du, G(u) = G, (u) G, (u) 
1 

Since the symbol G(U) in (2.2) conserves all the zeros of the initial symbol L(u), then 
the difficulty mentioned here, associated with the presence of these zeros, is not overcome 
in (2.2). Nevertheless, changing from (1.1) to (2.2) allows substantial simplification in 
obtaining the final solution. Moreover, as will be shown below, since (2.2) is an integral 
equation of the second kind with a continuous kernel, and its kernel can be expressed in 
elementary form x>l a direct method of solution can effectively be applied to this equation. 

3. Taking account of the equality 
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(2.2) can be reduced to the form 

PW-x s P(E)Q1(~-E)dE=kA lxl<a 
--a 

(34 

1 Q1 (x) = 2n s P,(U) e-i:ux &, P,(u)=l-G(u) 

The kernel Q1(.z) is obviously continuous (actually it is even infinitely differentiable). 
It has been shown /3-5/ that an equation of the form (3.1) is equivalent to two equations 

in the new unknown functions 'P (2) and v (5): 

m 

cp(~)--r~rp(E)Ql(r-E)dE=l,x--xS [~P(~u+~)-vIQ~(J+~)~E, r>O (3.2) 
0 0 

(3.3) 

if only 

p (x) = 'p (a + x) + 'c (a - z) - C, Ix I< a (3.4) 

In problems where the symbol G(u) has no zeros on the real axis, it is usually proved 
successfully 14, 5/ that 'p(x)+u as x+00. In this case the last integral in (3.2) turns 
out to be small and (3.2) and (3.3) become independent. Here (3.2) is transformed into a 
Wiener-Hopf equation and is solved by the factorization method, while (3.4) is a convolution 
equation and is solved in an elementary way by using a Fourier transformation. 

We will prove the smallness of the integral in this problem by starting from 
properties of the kernel Q,(X). Initially, we obtain an asymptotic expression for 
x+bo. The main difficulty here is to estimate an integral of the form 

J = & 
S 

&uxe-2x(c,+o~) du 

r 

It can be shown that the main contribution to J is made by the neighbourhood 
stationary point U* of the phase S: 

S(U,Z) = UX _t 2 1/l - u2 + 2 VP"- UZ 

the 
Q1 (4 as 

of the 

(3.5) 

where 0< u,< fl. It can also be shown that S, is a monotonically decreasing continuous 
function for any fixed r> 0, where S,>O for u=O and S,<O for U= p-0. There- 
fore, the equation S, = 0 determining the stationary point U* always has a unique solution 
that is easily found numerically, for instance, by the method of half division. In summary, 
we obtain that 

as x-+cc. 
Using the asymptotic forms of the two other components 

the estimate 
in the kernel Qr(x)/3/, we have 

Q1 - x-‘l= [A, (2) exp (2~s (m,, 2)) + 
As (4 exp (ix13 7/4 + x") + A,(x) exp (1% 1/4 + x") 

where A, (z), Aa (z) and A, (I) are smooth functions independent of x. 
A further estimate of the integral on the right-hand side of (3.2) 

use of integration by parts, well-known in such cases. Since the phase 

(3.6) 

will be based on the 
function (4 + x2)". 

has no stationary points for x>O, such an integration by parts shows that the contribution 
from components corresponding to the functions A B 
is of the order of K'fs. 

and -4, to the integral under consideration 
To explain the asymptotic behaviour of the component corresponding 

to the function A, we first see that there are no stationary points (in 
s (h*, 5) 

I) for the function 
for s>o. In fact, the equality 

s, (u. x) = 0 (3.7) 
determines the stationary point U* = U* (I); consequently, S (u*, x) =S 128, (I), xl. It hence 
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follows that dSldx = Suu+, -+ S,, or taking (3.6) and (3.7) into account ddidz = S,= u -= u* (x). 
Therefore, dSJdz = 0 only for u* = 0, and this is possible only for x=0, as is 

proved directly. From this it follows that from the term with A, the contribution to the 
integral on the right-band side of (3.2) is of the order x-% As x-+Do this integral can 
therefore be discarded. 

4. Omitting the details of the solution of the Wiener-hopf Eq.(3.2) and the convolution 
Eq. (3.3), we will write down the final result 

PM=* inz,x -- 
26_(O) 

R=l. 
(4.1) 

I-f, (z, j3) = {exp II t/(x@* - (3~k)~ (a + x)1 i- exp Ii f(+)” - (nk)2- 
.(a - x)]} x 1(%fp -- (nk)T’, G (a) = G+ (a) G_ (a) 

(the function G,(a) is analytic in the upper half-plane). 
We will also present an exact form of the solution of the analogous antiplane problem 

since a misprint occurred in /3/ 

(the quantities u2* ctl, are determined from (1.1) and (1.2)). The complex caleufation of 
the factor G+(a) of the function G(a) for x>'I can be simplified. Namely, integrals of 
the form 

can be reduced to the form 

(y = 1 or y = @) by successive replacement of the variables u. = --it, I = tz (2 4” 2y)l-“I, 
z = t/x, deformation of the contour, extraction of the main contribution as 1c300 and sub- 
sequent replacement of the variable t=iz. 

The integral in (4.4) is convenient for numerical realization since the integrand has no 
singularities for z>O and decreases exponentially as z-+00. 

The amplitude of the contact stress of the antiplane problem is shown in Fig.1 for x = 40 
(the lower part of the figure) and for x = 1% (the upper part). Fig.2 corresponds to the 
plane problem for x = 80. It was assumed everywhere that a = 1,~ = 0.3. Solutions correspond- 
ing to the explicit asymptotic formulas (4.1) and (4.2) are represented by the solid lines, 
the results of the numerical solution of the simplified Eq.(3.1) and its analogous equation 
in [3/ by dashes, and results of the numerical solution of the initial integral equation by 
the dash-dot curves. All numerical solutions are obtained by the collocation method. The 
dashed curves in the upper part of Fig.1 differ from the solid lines only in the neighbourhood 
of the end of the interval. 

The direct numerical solution of the initial equation is fraught with great difficulties. 
This is explained by the fact that as x%-tits kernelis the sum of a delta-like'and severalstrongly 
oscillating functions, which makes the process of calculation very unstable. The solution can 
be successfully constructed onfy in the antiplane case where the kernel of the initial equation 
/3/, unlike (l.l), has a fairly simple form. The instability of the calculation also requires 
a critical relation to the curves represented by the dash-dot lines; it is possible only to 
speak about their qualitative comparison with the curves obtained by stably realizable methods. 

As the frequency of vibration x increases, the contact stress diagrsm becomes more and 

more wavelike in nature. This phenomenon is explained by multiple rereflection of the rays 
from the bottom of the layer and differs from the analogous problem far a half-plane 151, 
where the contact stress tends to a constant value as z--r00. 

In conclusion, we note that the case when the strip is attached to the stiff base /I, 2/ 
can also be investigated by the method proposed in this paper. 
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